The Ethics of Nature

 

I remember as a child being completely overcome by the beauty of the Dandenong Ranges, the rain hitting the large ferns that danced to the ambience of the meditative bird sounds echoing from the colossal trees above, the smell of the moisture from the earth below that pirouetted with the scent of plants and wood of the forest and it kindled such joy within me that this emotional affinity continues today. I now often find myself retreating into the cool, forest enclaves across Victoria that ignite the same speechless feeling that I experienced many years ago. There are a number of sources that indicate that our time spent out in nature can improve our physical and mental health, from reducing blood pressure, stress, fatigue and even inflammation that lowers the risk of early death, as well as improvement of mood and even self-esteem that alleviates the symptoms of depression and anxiety and enables improved cognition and increased concentration. But, what is this therapeutic benefit, this strong bond or relationship humans have with nature? Like a person who smokes cigarettes, conscious that this is a major health risk but indifferent to the destructive nature of this pointless habit, humanity has become indifferent to the environment, and the ecosystem – like our body – is slowly being poisoned by the damaging effects of greenhouse gases. Do we have a moral obligation to ensure the preservation of our ecosystem and if so, what does the future of this discipline look like?

Several years ago, I went with friends to the Botanical Gardens to watch a movie at an outdoor ‘moonlight’ cinema they created and the noise from the fruit bats living in the surrounding trees brought to light the reasons for their controversial culling. The colonies of flying foxes are migratory and are both a pest as well as a risk to the plants and flowers of the gardens that make them a potential threat to the survival of many rare botanical species. In addition, the fruit bat – also known as the flying fox – carries the Hendra Virus that is transmitted to horses as it ingests food contaminated by bat droppings and other fluids, causing a number of severe symptoms leading to death. This virus can be transmitted to humans from the horse that causes influenza-like symptoms that potentially lead to death. The mortality rate is high and as a consequence fruit bats were ordered to be culled to reduce the growing numbers that reached crises levels. However, animal rights activists called out against the culling of the fruit-bats on account of their declining numbers and the reason for their migration being due to changes to their original habitat. This calls into question the actual problem that should encourage their protection. Indeed, the fruit bat was soon listed by the Federal Government as an endangered species that required an adequate approval process for culling.

When the Prickly Pear Cacti was introduced to Australia in the early twentieth century, the species quickly became an ecological pest that infested millions of hectares of land and devastated the Australian landscape that a radical method to destroy the outbreak was required in order to reduce the invasive botanical spread. Australia did not have the natural resources that could control the cacti and along with the warm climate and bird species that ate and ultimately distributed the seeds, the prickly pear wrought havoc on the land of the early settlers of New South Wales and Queensland. The tremendous effort required to manage the prickly pear cost more then it was worth that a prickly pear destruction committee was developed! It was until the introduction of the cactoblastis caterpillars that they found a solution to successfully control the outbreak and using this biological method – where the eggs and larvae extracted the plants moisture until the plant died – they were finally able to control the infestation of the weed.

It is clear that human behaviour can shape and control some aspects of our environment and our intellectual activity has enabled us to communicate and alter our decisions that allow us to ascertain our responsibility and forecast a sustainable or improved future scenario. To protect the integrity of our ecosystem, however, can sometimes appear to be bigger than us such as the consumption of natural resources including gas and oil that makes the average individual assume an abstract position in this ethical framework, that we can recycle our cans of drink and paper but still drive cars and use the gas stove. What is the difference in value between the prickly pear and the fruit bat? Why do we place more value on the fruit bat over the prickly pear?

Moral consciousness – what I call “love” or our ability to feel empathy and morally deliberate – originates from our understanding of value, where we give objects a moral status or as David Hume would suggest, that moral value is the value that I attach to the object and therefore relational and dependent on the agent. It is aligned with the theory that love is something that we give or entirely subjective and emotive and that what is value is simply what I believe is valuable and does not have an actual real, objective moral value. I clearly have an issue with this despite the logic behind such relational epistemology, because there is an absence of any value at all and thus if nothing has value then morality does not exist either. It also arouses questions on the exclusivity of moral actions – such as human life is intrinsically better than animal life for instance – or whether one outcome is more morally valuable over another. Intrinsic values are deemed to be valuable for itself or ‘in its own right’ whereas instrumental value are actions that are morally permissible based on a number of variables that leads to a moral outcome. If fruit bats were not an endangered species, would culling them be morally wrong?

Kant suggests that intrinsic moral value is the source of morality, that is, that since humanity exhibits as I suggested earlier the rational or cognitive capacity to deliberate moral agency, they thus contain moral value. Humanity contains intrinsic value and thus the agency to rationally will sufficient moral understanding, and while this may be anthropocentric, rights are also aligned with ethical responsibility or that our moral status is multi-faceted and thus we are enabled with the capacity to question and evaluate objects making values variable in nature. This is the nature of the ethical problem at hand, as human beings as moral agents have intrinsic value and with the criterion of rational cognition place value on objects that otherwise are instrumental in value that abandons the moral status to animals or our environment. What that means is that the effects of deforestation in order to power the economic engine of capitalism has more instrumental value than protecting forests, and those for or against deforestation will raise ethical pros and cons of both sides of the argument to try and justify the instrumental value of the environment.

quote-with-all-your-science-can-you-tell-how-it-is-and-whence-it-is-that-light-comes-into-the-soul-henry-david-thoreau-301249

Let’s take a look at McDonalds, with what I believe to be the most strategic and incredibly intelligent marketing campaign that attempts to justify the immorality behind their business by pretending that they are actually going to make a difference to what is their global impact on our environment. McDonalds had started adding “healthy options” to the menu to lure a continuity of customers, to try and be open and accountable about their ingredients to remove doubt as to the quality of their meat, and now are perpetrating a marketing campaign that claims that they are going to reduce their emission intensity by 2030 because of the sheer scale of the food chain’s impact on our environment. How is that possible when aligned with this is their global growth strategy that aims to increase consumer and ultimately business profitability? If the predominant item in the McDonalds menu is beef, let us take a look at cows for a moment. Agriculture is the primary reason for deforestation and not only is this destroying the habitats of thousands of species, but cows that make the meat in the burgers people eat contributes to global greenhouse gases since they produce more methane that has a greater impact on the environment than C02 emissions. What shifty bastards. People are now going to think that since McDonalds is being so-called open and accountable to global warming that eating McDonalds will no longer be immoral when any real attempt to reduce greenhouse gas emissions would be to completely stop eating McDonalds, which would contradict their profit goals. It is value-nihilism at best.

Like the gas stove or using the car, people believe their ethical position in this network of environmental change is abstract and that buying lunch at Maccas is really not going to change anything. It challenges the anthropocentrism of our moral position. Intrinsic value is not something exclusive to rational beings who symbolically project from their own mental reality, but rather as Henry David Thoreau states, “to be always on the alert to find God in nature,” and there is no symbolic or spiritual relationship but that moral realism is present in the physical world and can be directly perceived. That nature has intrinsic value and this biocentric angle moulds together the schism between good or bad qualities that we force on nature and thus rational thought and values become inseparable. Consciousness is no longer separate from nature. That like McDonalds, the primary cause of our problems with nature is the coercive projection of our irrational suggestion that only humans have intrinsic moral value; we become a part of nature, giving spirituality or that symbolic or metaphysical moral system a concrete reality (excuse the pun). While there may be a number of limitations to this since everything becomes almost morally impermissible, it certainly avoids that disillusioned or disembodied separateness, an us and them, the same disillusionment between a person who smokes cigarettes and their own body that they treat as an inanimate mechanism.

At the rate of global destruction that has reached a point of existential crises, civil disobedience and our duty to protect the environment and engage against injustice is very clear. I am preparing to embrace this reality around us, that I am not distant or abstract in the world but that spirituality and that symbolic connection is physical and real. As said by Thoreau: “You must live in the present, launch yourself on every wave, find your eternity in each moment. Fools stand on their island of opportunities and look toward another land. There is no other land; there is no other life but this.”

 

The Cassini-Huygens Mission to Saturn and Titan

Following the painstaking experience watching Titan on Netflix last night (I highly recommend you don’t watch it) which was about the possibility of life on Saturn’ moon following an existential crises plaguing earth, out of sheer agitation I decided to look into this theme and find out more. The Cassini-Huygens mission was a seven year journey of the NASA Cassini Orbiter along with the European Space Agency’ Huygens Probe intended to travel to the Saturn system. Titan IVB-Centaur rocket was launched from Cape Canaveral carrying the orbiter and probe in 1997 and passing Venus, Earth and our moon, an Asteroid Belt and Jupiter, the Huygens Probe successfully landed on Saturn’s moon Titan in 2005. The Cassini spacecraft also managed to capture new and detailed information and images including a number of new moons such as Methone and Pallene, as well as the first spacecraft to orbit Saturn that showcased surprising activity on Enceladus, new rings around Saturn, and a plethora of additional information not previously known by scientists. The 2 hour 27 minute descent to the surface was matched with 72 minutes on the frozen ground until contact with Cassini was lost, and the probe managed to obtain images of Titan’s geology and meteorology to reveal astonishing similarities to Earth. But is Titan really similar to Earth?

The primary scientific goal of the mission was to explore Saturn’s interior and atmosphere, the ring system and the magnetosphere and plasma environment, as well as the magnetic field and origins of Saturn. In addition, a strong focus Saturn’ second largest moon, Titan when the Huygens probe was launched into the moon through the thick atmosphere during its descent to the surface. The probe was intended to study both the atmosphere and the surface composition and contain six instruments that enabled this, such as the Huygens Atmospheric Structure Instrument (HASI) designed to measure the electrical and physical properties of Titan.[1] It was additionally equipped with the following experiments:

Surface Science Package (SSP) aimed at determining the properties of the surface where the probe landed in order to ascertain further details of its composition and measure other aspects of the landing site.

Descent Imager Spectral Radiometer (DISR) that used sensors to uncover spectral measurements of the surface and as it descended toward the surface took images of the spectra.

Gas Chromatograph and Mass Spectrometer (GCMS) that attempted to identify gaseous atmospheric properties and captured material that it analysed as it descended to the surface.

Aerosol Collector and Pyrolyser (ACP) is a device that collected chemical and aerosol samples of the atmosphere and analysed the material taken from the atmosphere.

Doppler Wind Experiment (DWE) detected Doppler shifts that the probe experienced and caused by the atmosphere and winds was measured along with other properties through radio signals.[2]

The atmosphere of Titan contains the chemical composition mostly of nitrogen, but also a mixture of methane, ethane and other hydrocarbons, which makes the composition itself similar to that of Earth that contains 80% nitrogen,[3] particularly as it is the only other planetary body in our solar system that has evidence of liquid on the surface. Images from Cassini show how the surface of the moon contains rivers of ethane and methane and explains why it is the only moon that has clouds and a thick atmosphere. The orbital period of Titan around Saturn nears 16 days and is tidally-locked to Saturn, while the distance to the sun is almost ten times further than earth at 9.54 AU making the solar energy captured by the moon at a much lower rate, however the atmosphere enables Titan to capture solar energy. “It’s partial transparency to significant amounts of sunlight, and its high opacity to longer wavelengths… [s]ome of the energy from the Sun reaches the surface of Titan because solar radiation consists mostly of photons at near-visible wavelengths and the atmosphere is partially transparent at those wavelengths,”[4] that allows only about 10% of the energy to reach the surface. This energy is then absorbed by the surface that releases infrared heat out and back into the atmosphere that re-radiates by out and back down and the phenomenon of this greenhouse effect contributes to the temperature, which is at 92k (-180 degrees Celsius). The atmospheric pressure of Titan is 60% greater than Earth and the radius is almost half, but as the mass of Titan is 1.3452 x 10^23 kg compared to this size, the gravity cannot hold the gas and thus the atmosphere is much greater than that of Earth.

Seasonal variations to do exist on Titan and the Cassini mission aided researchers to ameliorate their understanding of the patterns of atmospheric changes, arriving on the northern hemisphere of Titan during winter.[5] Seasonal changes, however, are incredibly slow as it is driven by the eccentricity of Saturn’ 29.5 yearlong orbit around the sun, and the atmosphere responds to the effects of these changes in rising and falling temperatures as well as day to night variations. The orbital configuration has resulted in an imbalance of methane lakes and rivers in the northern and southern hemispheres of Titan that transports chemicals through evaporation and precipitation differently. The atmospheric pressure on the surface is at 1500mbar and researchers have confirmed the moon experiences cryovolcanism captured by observations from Cassini where the eruption style and composition is similar to volcanoes erupting liquid instead of lava.[6] Among the other important findings include the origins of Titan’ methane and the chemistry of the atmosphere as the gas increased during the descent of the probe, until it reached the surface when a spike was detected at almost 40% increase in methane suggest the possibility during the formation and accretion period, methane became trapped in the ice and reached the surface through cryovolcanism. In addition, radiogenic argon-40 (40Ar) was also detected that further confirms details of Titan’ interior since 40Ar can only form through the decay of potassium-40 (40K) that is found in rocks.[7]

HASI findings also enabled scientists to measure the density of the upper atmosphere and showed the thermosphere to be warmer and with a greater density. Atmospheric circulation and the transportation of heat was captured by the DISR by the “imbalance seen in the radiative flux measurements”[8] and it indicates winds verified by the probe as it encountered the flow from west to east and therefore the same direction as the rotation of Titan. Models have since showed that the captured data confirmed a reversal of direction and different points during the descent of the probe caused by temperature variations between the northern and southern hemispheres and within the Hadley cell that circulates from the north and south poles.[9] The super rotating winds measured the Doppler shift during the descent of the probe and measured large variations in wind speeds as it decreased the closer it reached the surface and the findings also suggest that Titan does not have a mesosphere as was predicted.

The atmosphere of Titan was found to be stratified comparatively to Earth’ troposphere where variations in temperature produce layers and while the amount of sunlight is minimal, the icy moon still contains wind and clouds, where clear by images by Cassini indicate massive dunes on the surface.[10] This provides greater details of the structure of the atmosphere including its temperature, as the DISR captured images of the surface and terrain and showed a plateau of dried river beds and lakes with narrow channels and dendritic networks that parallel the fluvial configuration you’ll find on Earth particularly erosion which DISR detected and indicative of such activity. Buried below the icy surface together with the discovery of what is known as Schumann resonance, very low radio signals in the atmosphere (around 36 Hertz) and for such signals to be reflected, “an ocean of water and ammonia which is buried at a depth of 55-80km below a non-conducting, icy crust”[11] could explain this.

There were a number of reasons for destroying the Cassini orbiter by incinerating it through the powerful atmosphere of Saturn. Not only will it provide additional information to scientists both gaining closer access to the rings of Saturn and the upper atmosphere that provide a glimpse of the interior structure and the opportunity to accurately ascertain the age and composition through closer inspection of the mass of the rings surrounding the planet, but also because of regulations vis-à-vis interplanetary contamination. The preservation of the integrity of the solar system in order to prevent and potentially damage both other planets and our own has led to all spacecraft to undergo sterilisation processes to avoid microbe contamination, particularly of planets or moons that may be capable of organic habitat. The Cassini spacecraft detected a number of new finds on Enceladus that verifies the possible conditions for contamination of microbes from Earth. Cassini itself captured vapour being released from Enceladus that confirmed an oceanic subsurface Knowing that the craft itself has a maximum output of fuel, to prevent any risk of it contaminating the integrity of the moon, scientists decided to plan the death of the device.[12]

While Titan does have similarities to Earth, particularly for having a thick atmosphere and a high percentage of nitrogen, but a number of other missing or differing constituents make these similarities marginal at best. The benefits of the Cassini-Huygens mission to Saturn and Titan enabled scientists to gain further insight to clarify these terrestrial and atmospheric differences.

[1]Fulchignoni, M., Ferri, F., Angrilli, F. et al. Space Science Reviews (2002) 104: 395. https://doi.org/10.1023/A:1023688607077:
[2] Patrick Irwin, Giant Planets of Our Solar System: Atmospheres, Composition, and Structure, Springer Science & Business Media (2003) 330
[3] http://www.lmd.jussieu.fr/~sllmd/pub/REF/2012Icar..218..707L.pdf
[4] Athena Coustenis, Fred Taylor, F. W. Taylor, Titan: The Earth-like Moon World Scientific (1999) 62
[5] Ingo Müller-Wodarg, Caitlin A. Griffith, Emmanuel Lellouch, Thomas E. Cravens, Titan: Interior, Surface, Atmosphere, and Space Environment, Cambridge University Press (2014) 215
[6] R. M. C. Lopes, Cryovolcanism on Titan: New results from Cassini RADAR and VIMS: https://doi.org/10.1002/jgre.20062
[7] Robert Brown, Jean Pierre Lebreton, Hunter Waite, Titan from Cassini-Huygens, Springer Science & Business Media (2009) 182
[8]Ibid., Titan from Cassini-Huygens, 345
[9] https://www.nasa.gov/mission_pages/cassini/whycassini/cassinif-20070601-05.html
[10] http://pirlwww.lpl.arizona.edu/~jani/radebaugh-titandunes-aeolian13.pdf
[11] http://sci.esa.int/cassini-huygens/55230-science-highlights-from-huygens-9-schumann-like-resonances-hints-of-a-subsurface-ocean/
[12] http://www.spacesafetymagazine.com/space-exploration/extraterrestrial-life/cassini-huygens-preventing-biological-contamination/

A History of the Eclipse: The Birth of Science

A solar eclipse is a clear demonstration of celestial mechanics as the position of the moon and the sun temporarily shadows the sunlight on earth, and indeed for centuries has led to a number of mythologies that attempt to explain the geometry of the unknown universe and where civilisations and formidable historical figures came to greatly influence the study of science and astronomy as we know of it today. The ancient Babylonians, Egyptians and Chinese were so entrenched in these myths that they formed methodical processes aimed at calculating and predicting occurrences and did so with great accuracy that led to the development of the necessary instruments to aid in their observational techniques. For instance, the Babylonians believed that the solar eclipse could potentially be a bad omen that would predict the death of the King and this fear evoked constant study that soon thereafter established the 223 month Saros cycle of eclipses, something that we still use today. Have eclipses prompted astronomers and philosophers to theorise celestial geometry and planetary motion that ultimately enhanced scientific tools prior to the invention of the telescope by Hans Lippershey in 1608 and led to what is known as science?

Several shadows are formed between the earth and the moon that occurs during both lunar and solar eclipses, the latter a result when the moons’ shadow hits the earth, though the sun is four hundred times larger than the moon. During a total solar eclipse, this shadow is called an Umbra,[1] whereby the very center of the shadow’ core is blocked by the moon as it eclipses the sunlight and as this ends, the shadow becomes an Antumbra that forms the lighter section of this shadow. During an annular solar eclipse, when the light source contains a larger diameter due to the distance of the moon during an Apogee (when the moon is at its farthest distance on the elliptical from the earth), the moon appears smaller and thus silhouettes the heat of the outer edge of the sun, forming a visible ‘ring of fire’.[2] When the moon’ distance from the earth is at a Perigree and therefore at its closest range, it enables a total eclipse as the diameter roughly matches and covers the entire sun.[3] It is estimated that a total solar eclipse in a location only occurs once every several hundred years and being an exceedingly rare phenomenon and difficult to predict only added to the mysteries of the heavens.[4]

Prior to the use of the telescope, astronomers recorded their observations using a number of tools, once such being the Armillary Sphere or the Spherical Astrolabe that was used both as a teaching tool and to aid observations. Aristotle, notwithstanding his vast array of knowledge on a number of subjects, included in his curriculum vitae the title of amateur astronomer and authored On the Heavens that observed the material nature of the cosmos through concentric celestial spheres. For Aristotle, the world is both celestial and terrestrial, with the latter sphere composed of changing and chaotic elements of fire, water, earth and air that is surrounded within a perfect and unchanging celestial universe. His theories of motion and cosmology dominated the subject for centuries and remained similar to that of Eudoxus (c 337 BC) who stated that with the earth being the center of the universe, rotating spheres on individual axis moved at various speeds and angles around the earth.[5] As the earth is spherical in shape, it remains stationary as the sun, moon and planets rotated around the earth and the motions of these spheres carried all celestial activity including the fixed stars and ecliptic rotations. As Aristotle’ work survived and being highly influential unlike many of his predecessors, his cosmological views remained dominant until Ptolemy wrote Almagest, a voluminous encyclopedia of astronomy that summarised all knowledge of astronomy available at the time. He also had his own version of a planetary system that was based on the notion of spheres but instead adopted a preference for circular eccentricity or a circular shape of the ellipse (equant) that rotates at various speeds.[6] Accordingly, his system also abandoned Earth’ positon as the center of the system and thus changed the centuries-old influence of Aristotle.

However, prior to Aristotle’ astronomical accounts the Ionian philosophers perhaps beginning with Thales of Miletus (c624 BC) who is said to have predicted the solar eclipse of the 585 BC[7] became highly influential in the development of natural philosophy. According to Herodotus, this solar eclipse had such a powerful influence that the war between the Lydians and the Medes came to an end when they viewed the eclipse as a sign and a warning from the gods.[8] While the Egyptians and Babylonians had already formed extensive observations of the night sky, the latter in particular employing the Saros that determines periodicity of eclipses governed by a repetitive cycle spanning 18 years, 11 days and 8 hours and enabled them with the skill to predict eclipses,[9] they were restricted by the superstitions and myths formed in their pagan rituals that viewed these eclipses as bad omens, particularly for the ruling class. The Greek philosophers were empowered with more intellectual maneuverability that established a better scientific approach to astronomy that was instead viewed to be governed by natural laws; what made up the universe was material rather than supernatural and the Armillary Sphere exemplified this as a teaching tool. Thales studied geometry in Egypt and this mathematical knowledge was brought back to Greece as he soon thereafter became credited to developing a number of advancements in the subject that attempted to explain unknown astronomical concepts. The earth, for instance, was a large mass floating on water and earthquakes were evidence of oceanic turbulence. Thales stated that the material that formed the universe was water (our dark matter) and is the fundamental element that all the material world. Cosmological theories continued with his followers such as Anaximander and Anaximenes that questioned the origin of the universe. Anaximenes took it one step further, purporting that the element that forms water – air – is the building block of all material things and water is merely the compressed form of this element.

Anaximander was far more interesting as he purported that the universe was formed by a chaos of infinite opposites (such as hot and cold) and his cosmological model of the universe was intriguing to say the least, suggesting a cylindrical earth surrounded by wheels of fire from the sun that we are able to see through holes that rotate past us. This period is clearly marked a great many discussions on the physics of the universe that attempted to explain the appearances of celestial objects, when things are static or dynamic, constant or eternal. Hipparchus (c190 BC) discovered the precession of the equinoxes by using the solar eclipse by estimating the distance of the moon from the earth.[10] The Armillary Sphere were devices that enabled a demonstration of the rings that represented the celestial spheres and attached to them were fixed globes set to an elliptical axis and were “sometimes mounted on handles, but often were set like globes into cradles so that the sphere could be adjusted to represent the heavens as seen from any latitude.”[11] A number of spheres continued to be developed and adjusted from Ptolemy to Copernicus as an instrument to explain and observe equatorial coordinates and through Aristotle moved into the Islamic world.

The cosmological and astronomical theories during this period nevertheless contained the practice of supernatural and mystical influences that viewed the heavens as practical tools for predicting events throughout the passage of time. While methods of observations and the tools that strengthened how they recorded data steadily advanced, the observations continued to be shrouded by such celestial mysteries that evoked a sense of fear and awe. In China, for instance, the Emperor had control of the heavens and therefore predicting eclipses and other activities (lifa) along with the study of astronomical phenomena (tianwen) played a powerful role in his position as supreme leader.[12] Without an orderly understanding of astronomical event, it was viewed as a bad omen and a sign of problems ahead. China is attributed as having the first record of a solar eclipse (c. 2134 BC).[13] Like the ancient Hellenistic astronomers, China also used their own version of an ancillary sphere and took it even one step further by developing a mechanically powered globe using a sophisticated haudralic system during the Han Dynasty.[14] However, Shen Kuo (c1095) who is said to have developed the magnetic-needle compass did so following his observations of planetary motions and by using the models of solar eclipses was able to verify that celestial objects were in fact round.[15]

While such celestial activity was during the time of the Egyptians and Babylonians shrouded with pagan mysticism, astronomy soon thereafter through Saint Thomas Aquinas enabled the world to view Aristotelian cosmology through a Christian lens, one clearly visible when Copernicus’ model that the earth revolves around the sun was met with denunciation by the dominant Catholic influences of the time. Scholastic astronomy was introduced to medieval Europe from the Islamic Golden Age following the decline of the Roman Empire and the new Ottoman Empire steadily controlling the Middle East and North Africa attained access to the library of Alexandria and thus the work of the ancient Greeks, translating them into Arabic and improving a number of astronomical models that advanced an understanding of the elliptical movements of planets and the moon. Translations of the Arabic to Latin enabled Aristotelian and all scientific writing to move into Europe when the Christians conquered the Moors in Spain and Aquinas successfully incorporated Aristotelian philosophy into Christendom. Thinkers such as Casanus began to combine theological influences to cosmological theories, purporting that the universe is infinite and that there was no specific location of space, instead space was everywhere. The subject of eclipses developed intense interest during the Islamic Golden Age as Islam required a sophisticated approach to prayer that required the correct direction toward Mecca during important periods of sunrise and sunset together with the calendrical system of the moon that inevitably enhanced the study and the equipment thereof including sundials and quadrants.[16] However, it is the Equatorium that was developed by Ibn al-Samh and al-Zarqali and translated in Castille under the patronage of King Alfonso X[17] in the book Libros Del Saber De Astronomia (Books of the knowledge of astronomy)[18] that assisted with astronomical calculations.

It is clear that studies of the solar eclipse prior to the development of the telescope have led to a great many developments in the study of astronomy and science as a whole. As the ancient Hellenistic community of philosophers approached the subject with more freedom of religious constraint, natural philosophy contributed vastly to the subject that even included mathematical advancements, such as the Pythagorean Theorem where the square of the hypotenuse is equal to the sum of the square of the remaining sides of a triangle. Pythagoras himself believed that reality is formed through numbers or that the material world can be reduced to simple numbers and by bringing with him the knowledge from the Babylonians that the earth is spherical in shape, visible during a curved shadow on the moon during eclipses, changed the study of astronomy and ultimately influenced the development of the study of science as we know today.

When I first heard of the eclipse in the United States in 2017 as I was in Hawaii, I never really thought that this celestial phenomenon could have had such a profound historical influence on the study of science. While the subject evoked many mythologies, mythologies even present today with theories of biblical Armageddon that the eclipse has stirred, there is no doubt that the motion of the moon around the earth, the sun and planetary models that attempted to explain geometric orbits from spheres to water, mathematical to theological, changed the face of history and enabled the beginning of the study of western science. While the origin of the universe continues to remain impossible to answer – I myself am controversially of the opinion that the origin of the universe is in God – the material world that we experience nevertheless can be scientifically explained without it being shrouded by theological superstition and bad omens. I think we can use science to quite easily predict that if Armageddon were coming, it is likely because of the United States along with many other countries that are ruining the earth without needing the book of revelations to tell us that.

 

[1] Martin Mobberley, Total Solar Eclipses and How to Observe Them, Springer Science & Business Media (2007) 38
[2] Nicholas Nigro, Knack Night Sky: Decoding the Solar System, from Constellations to Black Holes, Rowman & Littlefield (2010) 206
[3] Op. Cit., Mobberley, 39
[4] Michael Borgia, Human Vision and The Night Sky: How to Improve Your Observing Skills, Springer Science & Business Media (2006) 112. It is good to note that total solar eclipses occur regularly (every 18 months) but in one given location will span over 300 years.
[5] Richard Jones, The Medieval Natural World, Routledge (2013) 30
[6] Michael Zeilik, Astronomy: The Evolving Universe, Cambridge University Press (2002) 34
[7] Lisa Rezende, Chronology of Science, Infobase Publishing (2006) 21
[8] William Hales, Chronology and Geography, C.J.G. & F. Rivington, (1830) 71
[9] https://eclipse.gsfc.nasa.gov/SEsaros/SEsaros.html
[10] Lloyd Motz and Jefferson Hane Weaver, The Story of Astronomy, Springer (2013) 45
[11] John Lankford, History of Astronomy: An Encyclopedia, Taylor & Francis (1997) 34
[12] Frances Wood, Great Books of China (2017) in Almanac or Tongshu (c 1000 – c 600 BCE)
[13] Aaron Millar, The 50 Greatest Wonders of the World, Icon Books (2016)
[14] Joseph Needham, Science and Civilisation in China: Volume 3, Mathematics and the Sciences of the Heavens and the Earth, Cambridge University Press (1959) 458
[15] Ancient China’s Technology and Science: Compiled by the Institute of the History of Natural Sciences, Chinese Academy of Sciences. Foreign Languages Press (1983) 153
[16] Ludwig W. Adamec, Historical Dictionary of Islam, Rowman & Littlefield (2016) 393
[17] Roshdi Rashed, Encyclopedia of the History of Arabic Science, Routledge (2002) 256
[18] Belén Bistué, Collaborative Translation and Multi-Version Texts in Early Modern Europe, Routledge (2016) 65

Alice in Wonderland: Inside a Black Hole

After a long morning on a charity walk before spending the afternoon fixing up my backyard, I decided that I would share the evening with a movie and well deserved dinner. ‘Event Horizon’ looked interesting, indeed it had the beloved Morpheus (Laurence Fishburne) as the main actor and certainly watching an action movie when your mind is incapable of processing anything can always work as a treat. But alas, the movie was rather tedious at best and I regretted not adhering to the temptation of re-watching Aliens with Sigourney Weaver who, admittingly, I have a huge girl-crush on. It would seem that the most mysterious in our universe tends to evoke the most interest, and indeed incredible levels of absurdity. The mystery of the existence of black holes is clearly one of them, from those who downright deny its existence to numerous suggestions about what happens to space and time when we enter a black hole that I felt compelled to ameliorate some details about black holes in this post and to hopefully reduce the likelihood of turning the science into a state of wild farcicality.

Stellar evolution is primarily about the mass and luminosity of stars that over time evolves until it reaches the end of its life cycle with millions of years passing during this process. Initially forming from the nuclear reactions or stellar ignition within a nebulae where gravity pulls the clouds of gas and dust into dense and hot ‘cores’ until the collapse reaches a nuclear fusion, the star is finally born and as the temperature during this fusion increases, it provides the energy that enables continuous emission of light or luminosity. Depending on the size, such as our own sun, the star will quietly settle on the Main Sequence for most of its life as thermonuclear fusion is enabled by the temperature  (10mk) to thus burn hydrogen into helium until the former is completely depleted. To burn helium requires a greater temperature and this is enabled by the force of gravity following the end of nuclear fusion as it contracts and therefore becomes hotter that hydrogen burning is thus ignited as the outer layers expand to form into a red dwarf or giant. The helium nuclei fuse to convert into carbon and oxygen in this rather tumultuous and highly energetic process until helium has completely converted but if the size of the star is not large enough, the contraction at the core does not heat up to the high temperatures needed to burn carbon. The Chandrasekhar Limit is a limit of 1.4 solar masses that categorises the mass of white dwarfs, which are the final result of low mass stars that are held together through electron degeneracy pressure. The density and pressure is enough to prevent further gravitational collapse, however stellar remnants that exceeds this limit will continue to collapse further until it forms into a neutron star which, again, is held together by the neutron degeneracy pressure. To form a black hole, the force of gravity overwhelms the neutron degeneracy pressure and therefore there is nothing left in space that would prevent the continued collapse of the star and thus the continuous singularity where therein contains no volume and infinite density becomes a black hole.

So what would happen if we found ourselves falling into a black hole? The mathematical concept of escape velocity was the first introduction to the theoretical concept and force of a black hole by amateur astronomer Reverend John Mitchell in 1783, whereby equating the universal gravitational constant 6.67 × 10-11 N m2 kg-2 with the mass of the body creating the gravitational field and distance between the body and an object escaping the gravitational field – thus the gravitational potential energy and kinetic energy – one could calculate the required velocity an object would require in an attempt to escape the gravitational pull of the field it is near. Accordingly, the size and radius of this body would then mean that,“all light emitted from such a body would be made to return towards it” and therefore such density would mean that light could never escape. The boundary or radius of the region surrounding the black hole that would enable some form of ‘escape’ is called the event horizon and the distance between the black hole and the event horizon is called the Schwarzschild radius Rwhich is calculated by the escape velocity as equal to the speed of light:

$$R_s = \frac{2GM}{c^2}$$

Whatever falls inside the event horizon will never escape. So what would happen if one passed the event horizon and fell into a black hole? A plethora of postulations have been made, one of them being time dilation, whereby the person travelling into the black hole would experience time as we know it, however outside of the black hole we would never be able to see her cross into the event horizon because time is much slower and what would be a few minutes for the person within could be thousands of years for the observer. That is, as one approaches the event horizon, gravitational redshift would make us see increases in speed of the moving object and anything with strong gravitational fields or compact objects causes an increase in the wavelength while at the same time decreasing the energy output. Spaghettification is yet another, where the tidal force of the gravity would stretch the object as it gets pulled in and the friction would cause it to heat to an incredible temperature.

Steven Hawking has recently purported that it is possible to travel to an alternate universe through a black hole; that is a black hole has ‘soft hair’ or extremely low energy quanta and what passes and event horizon does not disappear into oblivion but can actually come back out, only it will no longer be the same place. It is assumed that a black hole contains only several properties and the ‘no hair theorem’ first expressed by John Wheeler is that whatever falls beyond the event horizon is permanently inaccessible. The speculation is that the conservation of time within the black hole is caused by low-energy quantum excitations or ‘soft hair’ that when a black hole captures information by the material entering it, it also releases this information back out as it evaporates. But with time dilation, the information that is released is released perhaps into somewhere billions of years into the future or even a completely different universe. Hawking studied the emission of thermal energy or blackbody radiation (Hawking Radiation), which is indicative that quantum matter must be entering the black hole and that the source of its parameters would also eventually dissipate. According to quantum theory, this is caused by subatomic particles that exist for a moment as two separate (positive and negative) charged particles before reunited into one another and annihilating that momentary separation, as though their existence relies on the other in a perpetuity and these particle/anti-particles are present all over space. If they separate at the time of reaching a black hole, the positive would have the necessary charge to escape – effectively becoming the blackbody radiation that we observe – while the negative is doomed to fall in and as such the black hole will lose mass. This changes the classical conversation laws as the state of the particles changes at quantum level.

There are a number of methods currently being used to observe the existence of black holes, some indirectly particularly through binary systems – where a star is orbiting a black hole – and thus the emission of X-ray sources is stronger from the accretion disk’s spectrum, since it would imply that the star is orbiting a very dense object and thus a black hole. There are stellar black holes and then there are supermassive black holes, the latter containing millions and even a billion times more mass than its stellar counterpart. Supermassive black holes are said to be at the centre of our Milky Way and most large galaxies and observations of distant quasars that radiates incredible energy have enabled astronomers to conclude that the astounding levels of energy is only possible by a supermassive black hole. The formation of a supermassive black hole is unknown, though it is believed that the early stages of the universe assisted in their formation and as it consumed material over billions of years grew to its astounding size and power. It is also said that the supermassive black holes are the cause of active galactic nuclei that emit non-thermal energy such as quasars as well as galactic jets.

In 2014, NASA’ two telescopes detected an X-ray Flare from a supermassive black hole – Markarian 335 – that gave insight to astronomers about shifting coronas to an X-ray flare. The corona is a mysterious source of highly energetic particles or radiation found near the black hole accretion disk and they emit X-ray light, however details relating to their form and location of the black hole – since an event like a flare released near the event horizon would change our understanding of black holes including how fast it is spinning. There are two proposed suggestions of the position of the corona, with the first being Lamp Post Model where the corona is positioned on the axis above the rotating black hole, or the Sandwich Model where the corona is spread above and below the disc but the results suggest the former LP Model is likely. The disk around the black hole glows from the hot gas that is drawn around it and emits X-rays and as the material in the corona contracts as they are drawn closer together and the pressure launches the material out of the corona as it forms into a jet at ~20% speed of light. The brightness from the Doppler boosting or relativistic beaming where the concentration of superluminal motion of the jets remains somewhat mysterious.

The recent observation of the supermassive black hole Markarian 335 by NASA’ Nuclear Spectroscopic Telescope Array (NuSTAR) as well as the Swift Gamma-Ray Telescope – Markarian 335 being 324 million light years away – observed a large pulse of X-ray energy following the release of the corona away from the black hole. The observation enabled scientists to understand that the flare involves a process of release, that is a high-speed “launch” of the corona directly from the Black Hole that then causes the flare itself. The accretion disk of the black hole is incredibly hot where materials such as gas and space dust that has not yet been absorbed by the black spin around the event horizon and produce a glow in ultraviolet light. There are some explanations of the X-ray signals that NASA has detected, suggesting that as the heat around the accretion disk from the material glows ultraviolet and scatter above the disk which is further illuminated by X-ray energy that reflects off the disk, but there is also the theory that clouds block the visualisation of the mouth of the black hole and that shapes the X-ray spectrum that the detectors obtain with recent observations from the Gemini South Telescope in Chile that was able to measure the motions of gas around a supermassive black hole and zoomed in 10x closer to the galaxy core of NGC1097 and detected gas clouds ten light years from the nucleus. While flares are still mysterious, astronomers are taking steps closer toward understanding them.

Michael A. Seeds, Dana Backman, Stars and Galaxies, Cenage Learning (2015) 309
https://phys.org/news/2006-01-scientists-probe-black-hole-sanctum.html#jCp
Michal Dovciak, An XSPEC model to explore spectral features from black-hole sources – II. The relativistic iron line in the lamp-post geometry, arXiv:1412.8627  [astro-ph.HE]
Supermassive black hole corona and flare. A&G 2015; 56 (6): 6.5. doi: 10.1093/astrogeo/atv180
The Anatomy of a Black Hole, https://www.nasa.gov/image-feature/jpl/pia20051/the-anatomy-of-a-black-hole-flare
Gary T. Horowitz, Viewpoint: Black Holes Have Soft Quantum Hair, University of California, (June 6, 2016) Physics 9, 62
S. W. Hawking, M. J. Perry, and A. Strominger, “Soft Hair on Black Holes,” Phys. Rev. Lett. 116, 231301 (2016).

Ripples Through The Universe: A Stellar Find

Albert Einstein has become synonymous with term ‘genius’ and having set the foundations that strengthened the study of physics with his Theory of Special Relativity [SR] early in the twentieth century – that determined the speed of light is observed the same in any frame of reference and that the laws of physics is invariant for observers moving at a constant – it is easy to see why. This set to motion his General Theory of Relativity [GR], the most important step forward in scientific history that ameliorated our understanding of both gravity and of the curvature of space and time interwoven into a continuum. Unlike Newtonian physics where gravity is understood as a force and while space is influenced by this force, gravity instead was understood as a field within space-time and curved by the mass of objects like planets and stars. Thus gravitational fields are curved by matter and fastened to the geometry of space and time that responds by telling matter how it should move. Further studies by physicists continued toward the latter half of the twentieth century when Nobel laureates Russell Hulse and Joseph Taylor discovered a new type of pulsar, and the discovery enabled revolutionary studies into understanding gravitation. The survival of remnants from a supernova core is so massive that it collapses into a neutron star by condensing the protons and electrons into a neutron and into a very compact and dense space. The core of the neutron star can have the mass of one sun and only the diameter of around 15 km . Neutron stars spin very rapidly and emit radio waves that are detected as ‘pulses’ and their discovery of PSR 1913+16 binary pulsar – a radiating neutron star – helped ignite the prediction in GR of gravitational waves. The Hulse-Taylor Binary star system that has two neutron stars orbiting one another would lose energy through the radiation of gravitational waves and as the rate of the orbital timescale is decreasing, it confirmed gravitational radiation as predicted in GR must be the cause.

It is amazing that my studies in astronomy have allowed me to find out that there is evidence to prove gravitational waves! As a consequence, scientists attempted to build technology to study the possibility of gravitational waves and built the aLIGO – Advanced Laser Interferometer Gravitational-Wave Observatory – an upgrade to the initial iLIGO that is capable of observing great distances at almost 300 million parsecs. There are current discussions to prepare a LIGO detection device – eLISA – for space where detection could be far more accurate. These L-shaped devices known simply as interferometers are shaped like the letter L with each side of this L at the length of four kilometres, and contain laser lighting that measures the length of each side. This is done at a very meticulous rate at 1×10-15 meters as any gravitational-wave that enters LIGO would change the measurements and the light would stream out the interferometer. These interferometers are located in two observatories in Washington and Louisiana and when the gravitational-wave hit earth, both shifted synchronically by 0.0007 seconds. This was the first official confirmation that physicists detected gravitational waves and confirmed Einstein’ theory. The detection is said to have been formed by the collision between two black holes 1.3 billion years ago at a combined mass of 62 suns. However, individually, one binary black hole had the mass of 29 suns and the other 36, with the violence of the collision forcing three solar masses to be released as energy out as gravitational-waves across the fabric of the universe.

The first observation of gravitational waves known as GW150914 demonstrated binary black hole mergers that involve two black holes near one another. There are a number of ways that black holes can be formed and categorised depending on its mass and size, including the smallest primordial black holes, medium stellar black holes and the most common, as well as the largest supermassive black holes that contain the mass of one million suns that has been reported to exist at the centre of the galaxy. Stellar black holes begin its cycle during the end phase of the evolution of a star as it collapses in itself. To briefly ameliorate stellar evolution, when a protostar is small enough to heat and trigger nuclear fusion at its core, a star begins its life and the accumulation of particles continues to attract more as part of the accretion process until it generates a core temperature over 10,000K to enable it to sit on the Main Sequence, just like our sun. Otherwise, it will become a brown dwarf. When our sun – a yellow dwarf – becomes a red giant as hydrogen atoms are combined together to form helium atoms and along with the expansion of the surface area as the core continues to get hotter, the elements are transmogrified to heavy carbon and others until the helium stores are depleted. As the sun loses temperature, it really cannot do much with the carbon and thus gravity will enable it to expand and become unstable as outer layers disintegrate. The only remaining area of the star is the core – the white dwarf. At this point, the remnants of the red dwarf will cover the white dwarf with a planetary nebula and over time, it will cool down and into a black dwarf.

Hertzprung-Russel Diagrams [H-R diagram] contains details that explains the evolution vis-a-vis changes in the temperature and luminosity of a star and strengthens our understanding of where distinct group the brightest stars fall into [this includes supergiants, giants, subgiants and white dwarfs] and comparing it to our own sun that sits on the main sequence. Majority of our stars sit along the main sequence and all contain lumonsity scores that categorise them into spectral classes.

hrgenericsml

Variable stars, however, are the least stable and often change luminosity and size rapidly both for intrinsic and extrinsic reasons. For instance, Rotating Ellipsoidal Variables is perhaps a simplified example of why the luminosity of stars change, whereby extrinsic variables implies that the fluctuations in luminosity are wholly external to the star’ dynamics. Brightness of stars is dependent on the surface area – hence why massive stars are more brighter – thus when a pair of stars appear side-by-side, their surface area increases [from where we see them] and thus a binary system where stars are close enough that their shapes become distorted. This shape appears somewhat egg-like rather than spherical. Changes to the stars shape and luminosity has enabled astronomers to measure the time it takes for the stars to rotate. Spica, the brightest star in the constellation Virgo, is considered a Ellipsoidal Variables but detection is difficult as fluctuations are minimal [0.92-1.04 magnitudes] though they have captured that the length of the rotation is four days. Spica A is 11 times greater than our sun whilst Spica B is 7, which is why it is one of the top brightest stars in the night sky.

AM Herculis is a part of a unique class of cataclysmic variable stars; a binary star containing a white dwarf where its magnetic field is so strong that it channels the flow or synchronisation of the rotational and orbital system with the red dwarf star. It is known as ‘AM Her Stars’ or ‘Polars’, magnetic cataclysmic variables that contain two stars – a dominate white dwarf together with a red dwarf star – where a circular polarization exists together with a strong magnetic field. Cataclysmic variables are distinguished between non-magnetic and magnetic and the case of AM Herculis, it is the latter (polars). Polars are also divided into two categories, intermediate DQ Her Stars [where the magnetosphere is not strong enough though an accretion disk is formed] along with AM Her stars, that contains a very strong magnetic field that it pulls the two stars together into a synchronous rotation where the magnetic field eventually dominates the entire system and does not form an accretion disk. That is the red dwarf loses material as it is channeled by the strength of the white dwarf’ magnetic field and prevents the formation of an accretion disk, instead forming a funnel or accretion stream toward the magnetic poles of the white dwarf that emits strong x-ray emissions. These emissions heat the area around the pole that the kinetic energy sources soft x-rays on the white dwarf’ surface. The flow of material is locked into this funnel preferentially to one magnetic pole of the white dwarf. Other variable star types can be found here.

The death of a star by supernova is a cataclysmic event or a cosmic explosion that releases remnants of gas and contain radio waves and X-ray emissions. However, sometimes as the star depletes nuclear fuel, it no longer contains the energy to resist gravity and therefore the elements or material in the core of the star is compressed by the force of the gravity until it collapses under the weight. An extremely large star – something around 3 solar masses or larger – may collapse into a black hole. While black holes are so dense that light cannot escape, astronomers have been capable of identifying the existence of them – such as Cygnus X-1  – through emitted X-rays from the hot accretion disks surrounding the black hole as it captures nearby gas from a star. A black hole, surprisingly, does not contain many properties, which are mass, spin and electrical charge  and it may be that the latter contains no ‘charge’ while theoretically the matter would continue to collapse until there was no longer a radius and thus infinite density. This compression is known as the singularity and discovered by Karl Schwarzschild following the release of Einstein’ GT as the curvature of spacetime becomes infinite.

The detection of gravitational waves confirms that Einstein was correct and will enable scientists to understand the early universe with more acumen. It will also set the stage for a new area of astronomy and I just had to write a little bit about it.

Hulse R A 1994 The discovery of the binary pulsar, Rev. Mod. Phys. 66 699 and Taylor J H 1994 Binary pulsars and relativistic gravity, Rev. Mod. Phys. 66 711
Otto Struve, Stellar Evolution: An Exploration from the Observatory, Princeton University Press (2015) 33
https://www.e-education.psu.edu/astro801/content/l5_p3.html
http://www.ligo.org/science/Publication-GW150914/
Beech, M, The Ellipsoidal Variable, Astrophysics and Space Science (ISSN 0004-640X), vol. 117, no. 1, Dec. 1985, p. 69-81.
Hessman, F.V., Gansicke, B.T., and Mattei, J.A., “The history and source of mass-transfer variations in AM Herculis”, Astron. Astrophys., 361, 952-958, 2000.

Fractured Time and Quantum Mysteries

Whether we would like to admit it or not, I am confident that each of us has had a time-related encounter, perhaps minor in nature, where we experienced a future instant or event likely through a dream that publishes a moment in time coincidentally before it takes place. It almost feels holographic where an idea or event is actually encoded material captured and projected into patterns of pictorial experiences that often lack sequential plausibility, as though our aesthetic and linguistic limitations attempt to translate what we conceptually prohibit when conscious. Whilst it is easy to repudiate the experience as an isolated and perhaps even a negligible event or at polar opposite as divine providence, I sought to traverse this irrational landscape devoid of three-dimensional space and found myself compelled to the colossal subject of an infinite dimensional hypothesis of time, of cognition and the quantification of consciousness, and interconnectivity or entanglement theories. It has always been an intriguing thought for me to contemplate what the state of our physical universe would look like without an arrow of time and whether time dilation and the effect of motion could be taken to another level. What if there is a universe where effect precedes cause, or where we have memories of the future whilst the past remains elusive? What if a mirror universe existed from the Janus point where time fractured and split in two different directions, the one forward as we know it and the other backward? And finally, what if our universe was interacting with these extra dimensions where gravitational waves – if we could call it that – somehow transgresses quantum states and where communication between parallel worlds relative to our own experience of time and space somehow leaks and where inter-world exchange becomes possible?

Understanding the subatomic world is not without its weirdness and however vast the literature on the topic of cosmology, the reality is that we still do not know how the universe came to begin, despite the many various interpretations each with an astounding logic. But let us assume at this point that there is no known origin of the universe in physics because any attempt requires a fundamental understanding of space and time, knowledge that we simply do not have and so a study of ‘time’ before the universe cannot be implicitly understood. For the sake of simplicity, let us assume the universe simply came from some quantum origin where the initial conditions were right and focus on the astronomical plateau relative to our cognitive limitations. As said by Newton: “I do not know what I may appear to the world; but to myself, I seem to have been only like a boy playing on the seashore, and diverting myself in now and then finding a smoother pebble or a prettier shell than ordinary, whilst the great ocean of truth lay all undiscovered before me.”[1]

There has been some interesting discussions highlighting the possibility of inter-world exchange through energy coupling using quantum optical equipment[5] and with experimental results favouring the possibility that parallel universes could indeed exist. The experiment runs along the lines of isolating an ion molecule while forming two parallel worlds in another system through a quantum measurement, whereby the ion interaction should display excitation with only one, however, the idea is that through low bandwidth information [weak coupling] sent through the parallel reality, the ion’ excitation could be displayed in the other parallel world, becoming evidence for not just for the many worlds interpretation but also for communication between worlds. The properties that define these ‘worlds’ are connected and interact within an infinitely vast yet interstitial space that separates all the interactions.

Taking it up a notch is the inflationary model of the multiverse theory and whilst both theories have similarities, this multiverse model contains a different design, namely that pockets of multiple universes exist due to cosmological expansion. That is, the early universe contained a small Ø>=0 or ≥10-26 m patch [that is cH- whereby the age of the universe is more or less a calculation of the speed of light times the inverse of the Hubble constant] that expanded exponentially at a constant threshold through gravitational repulsion (Fv). 

It becomes slightly interesting when exploring the multiverse with string theory – the inflationary model recognises particles as quanta excitation of a field; a scalar field spins in all directions [that is, the field being at the lowest energy density where the particles within are the exited states; a false vacuum is the temporary state where the highest energy density is stuck and acts as a vacuum that cannot be lowered] – where we could visualise an interesting scene of these other pocket universes containing entirely different particles, fields and energy states. The string theory model purports that our universe is actually a three-brane – a brane being an object that allows multiple dimensions to exist within it [string theory of quantum gravity claims that particles as ‘strings’ of vibrating energy within ten spatial dimensions][6] – whilst we merely experience the three dimensions of space as it dominates the brane. While particles like quarks are attached to the dimensions that we experience, gravitons being closed strings cannot ‘attach’ and therefore gravity could leak off the 3-brane and travel to higher dimensions and thus travel through dimensions that we fail to experience. It could also explain dark matter and energy as well as why we experience weak gravity, but I don’t want to get carried away right now and will leave that for another post. What I do have in mind, however, is the relationship between gravity and time in relation to the 3-brane model considering that if an object moves away from the source of gravity at different rates, time moves faster depending on the gravitational field.

The fact is that there exists no applicable law in physics that requires the direction of time to move forward as we experience it. What we assume is that entropy is the cause of the arrow of time – the second law of thermodynamics – but we also know that the initial conditions of the early universe started off with very low entropy, which has stifled physicists and developed a plethora of various ideas that have yet to clearly describe temporal direction. Turning back to the inflationary model, there have been discussions raised by prominent physicists about the possibility of an inverse mirror of time where particles expand into two different directions similar to the parallel hypothesis of space. The Janus Point [the moment before expansion] as explained by Julian Barbour purports that the initial conditions of low entropy and the cosmic certainty of increasing entropy is not essentially required when discussing the arrow of time and that it is merely an inevitable product of physical laws.[7] 

He and his colleagues imply, unlike most cosmologists, that the arrow of time is centred on gravity rather than thermodynamics. Gravity is not just a force; when you think of floating through space, you think of the slowing of time just as you would its speed when you are freefalling 10,000 feet from the earth’s surface. Analysing the dynamical behaviour of particles through a computer simulation where particles interact through Newtonian gravity, the system showed that each particle would evolve toward maximum uniformity and the lowest distance between pairs before the force of gravity itself reaches a condition that refracts time into two different directions, both symmetrical but opposite viz., temporal arrows. That is, time moves in two directions but like Schrödinger’s Cat, the question is are we only able to experience one arrow of time or have we split into two possible dimensions where time moves backwards in one and the other forwards with two of ‘me’ experiencing one or the other?

[1] Isaac Newton, From Brewster, Memoirs of Newton (1855)
[2] Hugh Everett “Relative State Formulation of Quantum Mechanics”. Reviews of Modern Physics, 29: 454–462 (1957)
[3] John Gribbin, In Search Of Schrodinger’s Cat , Random House (2003)
[4] R. Laurence Moore, Cosmogenesis: The Growth of Order in the Universe, Oxford University Press, (1991) 129
[5] R.Plaga, Proposal for an experimental test of the many-worlds interpretation of quantum mechanics
[6] Michio Kaku, Introduction to Superstrings and M-Theory, Springer Science & Business Media (1999) 463
[7] J. Barbour, T. Koslowski, and F. Mercati, A gravitational origin of the arrows of time